
Finite Automata
See Sections 2.1 and 2.2

Let's start with an example:

Here you see labeled circles that are states, and labeled arrows that
are transitions. One of the states is marked "start". One or more of
the states has a double circle; these are a terminal states or accept
states.

To process a string with this automaton, begin in the start state at
the start of the string. Walk through the letters of the string, taking
the transitions labeled with the letters. If you are in an accept state
at the end of the string, accept it; otherwise reject it.

S

U

T

start

a
b

b b

S

U

T

start

a
b

b b

For example, on string "abbb" we go
through the states SSTUT and end in an
accept state, so we accept "abbb". On the
other hand, with string "bb" we go
through states STU and we do not accept.

With string "abab" we start in state S, stay in S on input 'a', go to state
T on input 'b' and then have nowhere to go on input 'a'. Again, we do
not accept the string. The only strings accepted are those for which
the automaton consumes all of the letters in getting to an accept
state.

S

U

T

start

a
b

b b

The usual question for a finite automaton
is "What is the language accepted by the
automaton?"

The language accepted by this automaton is the set of strings with
any number of a's followed by an odd number of b's.

In general, a "Deterministic Finite Automaton" or DFA is a quintuple
(Q, S, d, s, F) where

Q is a finite set of states
S is an alphabet of symbols
d is a transition function whose inputs are a state and an

element of S and whose output is a state. This is represented
by the arrows in our diagrams.

s is one of the states in Q. This is our start state. Note that there
is only one start state in an automaton.

F is the set of accept, or final states.

A DFA processes strings in S* as follows: Let w=a0a1...an-1 be a string in
S*. Let q0 be s (the start state), and for i > 0 let qi = d(qi-1,ai-1) The last
state is qn. If qn is an element of F accept the string w.

This definition assumes there is a transition from every state on every
element of S. We can make any automaton fit this by adding for any
missing transition a transition to a "dead" state from which there is no
exit.

S

U

T

star
t

a
b

b b dead

a

a

a,b

It is useful to use the Language of Regular Expressions to describe the
strings accepted by an automaton:

1. Any particular string w represents the language {w}
2. If expressions E and F represent languages L1 and L2 then

expression E+F represents L1 ∪ L2 .
3. If expressions E and F represent languages L1 and L2 then

expression EF represents the language of strings formed by
concatenating a string from L2 onto the end of a string from L1.

4. If expression E represents language L then expression E*

represents the language of strings formed by concatenating 0 or
more strings from L together.

5. If expression E represents language L then expression E+

represents the language of strings formed by concatenating 1 or
more strings from L together. E+=EE*

S

U

T

start

a
b

b b

We said before that this accepts the language of any number of a's
followed by an odd number of b's. This language is represented by
the regular expression a*b(bb)*

Example 1.

Example 2

S T U
start

0

1

1

This accepts 10(10)* = (10)+

Example 3

TS
start

b

b

a a

This accepts strings with an even number of b's:
(a*(ba*b)*)*

Example 4: Find a DFA that accepts 101, 11010, and nothing else.

S T V
start

01
U

ZW X Y0 0

1

1

1

Note that by imitating this example you could make a DFA that accepts
any particular finite language.

Note that it is easy to write a program that simulates a DFA's actions
on a string. You might have one variable that represents the current
state and a for loop that iterates through the letters of the string. For
a simple DFA with only a few states you might have a big conditional
statement that checks the various cases: if you are in state foo with
input letter bar change the state to fee. For a more general
automaton represent the transition function by a 2D table whose
rows are indexed by the states and whose columns are indexed by the
alphabet letters. Table[foo][bar] is the state to transition to if you are
in state foo and see input letter bar.

Definition: We say that a language is regular if it is the language
accepted by some DFA.

For examples:
• S* is regular for any finite alphabet S.
• Every finite language is regular.
• 10*1 is regular.
• Strings of 0's and 1's with an even number of 1's is regular.

Which of the following are regular? For each let the alphabet be {0,1}
Note that we can show a set is regular by producing the DFA that
accepts it. We don't have a way to show a set isn't regular. We will.

a) Strings of length 2? yep
b) Strings of even length? yep
c) Strings of prime length?
d) Strings with the same number of 0's as 1's?
e) Strings with more 0's than 1's?
f) Strings that contain 010 as substrings? yep
g) Strings with no more than 2 0's? yep
h) Strings with at least 2 0's? yep
i) Strings that are palindromes?
j) Strings that are palindromes of length 6 or less? yep

Of course, we would like some way to characterize the languages
that are regular so we could determine if a language is not regular.

